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Toxicogenomic studies are increasingly used to uncover potential

biomarkers of adverse health events, enrich chemical risk

assessment, and to facilitate proper identification and treatment

of persons susceptible to toxicity. Current approaches to biomarker

discovery through gene expression profiling usually utilize a single

or few strains of rodents, limiting the ability to detect biomarkers

that may represent the wide range of toxicity responses typically

observed in genetically heterogeneous human populations. To

enhance the utility of animal models to detect response biomarkers

for genetically diverse populations, we used a laboratory mouse

strain diversity panel. Specifically, mice from 36 inbred strains

derived fromMus mus musculus,Mus mus castaneous, andMus mus

domesticus origins were treated with a model hepatotoxic agent,

acetaminophen (300 mg/kg, ig). Gene expression profiling was

performed on liver tissue collected at 24 h after dosing. We

identified 26 population-wide biomarkers of response to acetamin-

ophen hepatotoxicity in which the changes in gene expression

were significant across treatment and liver necrosis score but not

significant for individual mouse strains. Importantly, most of these

biomarker genes are part of the intracellular signaling involved in

hepatocyte death and include genes previously associated with

acetaminophen-induced hepatotoxicity, such as cyclin-dependent

kinase inhibitor 1A (p21) and interleukin 6 signal transducer

(Il6st), and genes not previously associated with acetaminophen,

such as oncostatin M receptor (Osmr) and MLX interacting

protein like (Mlxipl). Our data demonstrate that a multistrain

approach may provide utility for understanding genotype-

independent toxicity responses and facilitate identification of

novel targets of therapeutic intervention.
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Biological monitoring to assess potential toxicity of chemical

and pharmaceutical compounds relies heavily on the availability

of sensitive, specific, and widely applicable biomarkers of toxic

effects (International Programme on Chemical Safety, 1993).

Toxicogenomics has been used at all stages of chemical risk

assessment, and it is thought that gene expression changes may

be utilized as biomarkers of adverse effects (Casciano and

Woodcock, 2006). Current approaches often attempt to classify

compounds with the goals of predicting adverse responses to

specific chemical classes (Fostel, 2007), understanding the

underlying biological mechanism of toxicity (Dix et al., 2006),

or identifying key nodes in the toxicity pathway that may serve

as effect biomarkers (Fry et al., 2007). Extensive proprietary

(Castle et al., 2002; Ganter et al., 2008) and public (Mattingly

et al., 2006; Waters et al., 2008) databases containing gene

expression profiles and pathological end points derived from

rodent and human tissues exposed to a variety of chemicals have

been developed, thereby allowing the scientific community to

mine the data for toxicity biomarkers of interest.

Many biomarkers of toxicity may be surrogate measures for

the genetics of an individual, which can play a major role in

determining the threshold of toxicity of a given compound

(Lanfear and McLeod, 2007). Compelling research has led to

the identification of gene variants that correlate with drug

toxicity (Feero et al., 2008), and recent pharmacogenomic

research efforts have made significant advances in connecting

variability in responses to drug efficacy and/or toxicity to

genetic polymorphisms (Weiss et al., 2008). While major

research efforts are seeking genetic and genomic markers that

could identify individuals susceptible to toxicity, less attention

is given to the fact that interindividual variability in responses

and genetic control of gene expression may present a challenge

for finding robust population-wide expression biomarkers of

toxicity responses (Gatti et al., 2007). Indeed, while toxicoge-

nomics has been used widely for the study of toxicity

biomarkers across compounds and across species, its useful-

ness in determining biomarkers that are relatable to a diagnostic

toxicity within a genetically diverse human population is

limited by a lack of intraspecies comparisons.

To address the need for a biomarker identification strategy

that is independent of population heterogeneity, we utilized

a mouse Laboratory Strain Diversity Panel (Bogue and Grubb,

2004). The use of a genetically defined panel of mice has
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advantages over classical toxicology testing strategies that

utilize a single inbred or outbred strain because it takes

advantage of the vast genetic diversity that is available among

inbred mouse lines (Roberts et al., 2007). We hypothesized that

toxicity responses across a panel of strains will produce a range

of effects expected in a human population and that this

phenotypic diversity can be used to identify population-

dependent and -independent mRNA transcript biomarkers of

response. To test this hypothesis, we selected the model

hepatotoxic agent, acetaminophen. We observed a dramatic

gradient of acute hepatotoxicity across strains, and the analysis

of liver gene expression data revealed 26 genes that correlated

with liver necrosis outcome and were not affected by genetic

differences between individual strains. Thus, these genes, the

majority of which are tightly linked in a cell death and

proliferation network, can serve as response biomarkers for

acetaminophen-induced toxicity responses across a genetically

heterogeneous population.

MATERIALS AND METHODS

Mice. Male mice (aged 7–9 weeks) were obtained from the Jackson

Laboratory (Bar Harbor, ME) and housed in polycarbonate cages on Sani-

Chips irradiated hardwood bedding (P. J. Murphy Forest Products Corp.,

Montville, NJ). Animals were fed NTP-2000 wafer diet (Zeigler Brothers, Inc.,

Gardners, PA) and water ad libitum and maintained on a 12-h light-dark cycle.

Mice utilized in this study comprise 36 inbred strains that are priority strains for

the Mouse Phenome Project (Bogue and Grubb, 2004): 129S1/SvImJ, A/J,

AKR/J, BALB/cByJ, BTBR Tþ tf/J, BUB/BnJ, C3H/HeJ, C57BL/10J,

C57BL/6J, C57BLKS/J, C57BR/CdJ, C57L/J, CAST/EiJ, CBA/J, CZECHII/

EiJ, DBA/2J, FVB/NJ, JF1/Ms, KK/HlJ, LP/J, MA/MyJ, MSM/Ms, NOD/

ShiLtJ (formerly NOD/LtJ), NON/LtJ, NZO/H1LtJ, NZW/LacJ, P/J, PERA/

EiJ, PL/J, PWD/PhJ, RIIIS/J, SEA/GnJ, SJL/J, SM/J, SWR/J, and WSB/EiJ. F1

hybrid mice, B6C3F1/J, were also used for phenotypic measurements. These

studies were conducted under a protocol approved by the Institutional Animal

Care and Use Committee at the University of North Carolina at Chapel Hill.

Acetaminophen administration and sample collection from mice. Mice

were singly housed and fasted 18 h prior to intragastric dosing with

acetaminophen (99% pure; Sigma-Aldrich, St Louis, MO; N ¼ 3–4 per strain)

or vehicle (0.5% methyl 2-hydroxyethyl cellulose; Sigma-Aldrich; N ¼ 2 per

strain, except for strains PERA/EiJ, SWR/J, and CZECHII/EiJ (N ¼ 3), as well

as strains AKR/J and CAST/EiJ (N ¼ 1, i.e., sufficient tissue was not available).

The dose of 300 mg/kg was delivered in 10 ml/kg of vehicle. Dosing was

performed at the same time of day (9:00 A.M.) throughout the study as diurnal

effects have been shown to affect gene expression in rodent studies (Boorman

et al., 2005). Feed was returned 3 h after dosing; animals were necropsied 24 h

after treatment (nembutal 100 mg/kg, ip; Abbott Laboratories, Chicago, IL).

Livers were quickly excised following exsanguination, and sections of the left

lateral lobe were placed in 10% phosphate-buffered formalin for immunohis-

tochemical analyses. Tissues were stored in formalin solution for 72 h prior to

transferring tissue to 70% ethanol. Formalin-fixed liver tissue was then

embedded in paraffin. Remaining liver from the left lobe was snap frozen in

liquid nitrogen and stored at � 80�C for RNA extraction.

Liver histopathology. Paraffin-embedded liver tissue was cut to 5-lm

sections in duplicate and stained with hematoxylin and eosin. Liver injury in the left

liver lobe was blindly scored by A.H.H. and confirmed by a certified veterinary

pathologist. Necrosis was quantified by unbiased stereology using a point-counting

technique (Mouton, 2002). Briefly, a grid with 100 evenly spaced points was

overlaid on printed images of liver sections taken at3100 magnification. The total

number of points lying in an area of necrosis was divided by the total number of

points lying completely within the entire tissue section to determine a percent

necrosis score (0–100%). The necrosis score for each animal in the study is publicly

available from the Mouse Phenome Database (http://phenome.jax.org/pub-cgi/

phenome/mpdcgi?rtn ¼ projects/details&sym ¼ Threadgill1).

RNA isolation. To eliminate variability in transcript expression that might

arise between liver lobes, the left liver lobe was selected for the remainder of

the data analysis and gene expression profiling. RNA was extracted from the 30

mg of tissue derived from the left lobe of sample livers using the Qiagen

RNeasy kit (Qiagen, Valencia, CA). RNA concentrations were measured using

a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilming-

ton, DE), and quality was verified using the Agilent Bio-Analyzer (Agilent

Technologies, Santa Clara, CA). RNA was determined to be of good quality for

use in microarray hybridizations if the 28S:16S rRNA ratio was greater than 1.8

and the 260/280 nm absorbance ratio was in the range of 1.9–2.1.

Microarray hybridizations. In this study, all RNA samples were hybridized

to arrays individually; none were pooled. RNA amplifications and labeling were

performed using Low RNA Input Linear Amplification kits (Agilent Technol-

ogies). For hybridization, 750 ng of total RNA from each mouse liver was

amplified and labeled with fluorescent dye (Cy5). In parallel, 750 ng of

a common reference RNA (Icoria, Inc., RTP, NC) was labeled with the

fluorescent dye, Cy3, in order to standardize analysis of global gene expression

between mouse strains (Bammler et al., 2005). Labeled cRNA was then

processed and hybridized to Agilent Mouse Toxicology Arrays (catalog# 4121A,

22,575 features) according to the manufacturer’s protocol. Details regarding the

microarray probe set on the 4121A array are available via the Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc ¼ GPL891). Fol-

lowing hybridization, arrays were washed using a custom protocol developed by

Icoria, Inc. Briefly, array gaskets were removed under immersion in wash

solution 1 (63 sodium chloride/sodium phosphate/EDTA [SSPE], 0.005%

N-lauroylsarcosine). Arrays were washed with wash solution 1 and incubated for

1 min with gentle agitation on a magnetic stir plate. A second incubation was

performed in wash solution 2 (0.063 SSPE, 0.005% N-lauroylsarcosine).

Data analysis of significantly changed transcripts. Raw microarray

intensity values were obtained from Agilent Feature Extraction software (v8.5)

and archived in the UNC Microarray Database (http://genome.unc.edu). Raw

data are available to the public through this database. The log2 ratio of Cy5/Cy3

intensity was normalized using locally weighted scatterplot smoothing to

eliminate intensity bias of features. Transcripts with fewer than 70% available

data across samples were excluded from the analysis, reducing the probe list to

15,509 transcript probes. Available data are defined as those probes that are

neither saturated nor below the limit of quantification. Intensity ratios were

transformed to eliminate hybridization batch effects using the batch normaliza-

tion feature in Partek Genomics Suite (Partek, Inc., St Louis, MO). Analysis of

significant transcripts was performed using an analysis of covariance

(ANCOVA) model in Partek in which the main effects were mouse strain,

treatment, the interaction of mouse strain and treatment, and the sample necrosis

score. Transcripts were called significantly different if the p value was less than

a threshold determined by a step-down false discovery rate (FDR, Benjamini and

Liu, 1999) (a ¼ 0.01) to correct for multiple comparisons across array features.

Heat maps were generated using hierarchical agglomerative clustering.

Single-nucleotide polymorphisms in probe sequences. There is the

potential that strain-specific gene expression differences found using microarrays

could be produced by single-nucleotide polymorphisms (SNPs) that occur within

probe sequences (Alberts et al., 2007). The genomic locations of the probes on

the Agilent G4121A microarray were obtained from Agilent Technologies. High-

density mouse SNP data containing 7.87 3 106 SNPs were obtained from

Szatkiewicz et al. (2008) for the 36 inbred strains used in this study. We found

that 4,091 of the 20,868 probes on the Agilent 4121A array contained at least one

SNP. For each probe that contained an SNP, we performed Student’s t-tests

between the C57BL/6J allele-containing strains and those with the opposite

allele. Of these, 948 probes contained an SNP for a single strain, providing no
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meaningful way to carry out a t-test. We performed Fisher’s exact test on the

remaining 3,143 probes to determine if there were more probes with C57BL/6J

allele high expression on the list of significant probes than would be expected by

chance. We found a significant effect of probe SNPs within the data set (P ¼
0.01) and identified 49 probes that were significantly affected at a 5% FDR.

We removed these probes from further analysis.

Functional analysis of significant genes. Ingenuity Pathway Analysis

(IPA, IPA v. 7.1; Ingenuity Systems, Redwood City, CA) was used to

determine canonical pathways that are enriched by the significant transcripts

identified by the ANCOVA model for each factor. Significance values were

calculated based upon a right-tailed Fisher’s exact test that determines whether

a pathway is overrepresented by calculating whether the genes in a given

pathway are enriched within the data set compared to all genes on the array in

the same pathway; p < 0.05 was selected as the cutoff for significance based on

IPA threshold recommendations. Only those pathways with a p value above the

threshold and having more than two representative genes in the data set were

considered significant. The gene network of the 26 response biomarkers was

prepared by determining connecting nodes, interactions, and cellular compart-

ments using the IPA software.

RESULTS

Histopathology of Liver Toxicity across Inbred Mouse Strains

At 24 h after dosing with 300 mg/kg of acetaminophen (ig),

we observed centrilobular necrosis in the liver consistent with

that previously reported for acute doses of acetaminophen

(Hinson et al., 2004; James et al., 2003). Necrosis was

accompanied by minor inflammatory infiltration into the

hepatic parenchyma, and in varying degrees, hemorrhage was

also present. Quantitative liver necrosis scores reflective of the

proportion of the affected area were obtained from the left liver

lobe (Foley et al., 2006) and demonstrated a wide range of

toxicity across the panel of inbred mouse lines (Fig. 1). The

rank order of sensitivity to acetaminophen-induced liver injury

across strains shows that the majority of tested strains (30/36)

sustained less than 40% liver necrosis, while 6 strains sustained

liver necrosis of between 40 and 100%.

Determination of Gene Transcripts Associated with Strain,
Treatment, and Liver Necrosis

Gene expression values were collected on individual animals

in this study (vehicle and acetaminophen-treated mice) and used

for principal components analysis to visually examine the

patterns in global mRNA transcript differences (Fig. 2). The

unsupervised analysis displayed separation of the samples by

both treatment and by the amount of liver necrosis sustained in

the animal, indicating that gene signatures may be determined

that are correlative with liver toxicity due to acetaminophen.

To determine those transcripts in which expression was

significantly differentiated among the experimental factors, an

ANCOVA model was used. Covariate factors for each

individual mouse included the strain (genotype), treatment

(vehicle or acetaminophen), the interaction between strain and

treatment because of anticipated genotype-specific effects on

acetaminophen metabolism and transport, and the liver necrosis

score. The number of transcripts significantly changed among

each experimental factor is depicted in a Venn diagram

(Fig. 3A). Interestingly, the majority of genes (1,511) found to

be significantly different between samples in the ANCOVA

analysis were attributed to the strain effect, not acetaminophen

treatment, or the degree of liver necrosis. These genes were

found not to have a significant effect of probe SNPs within the

data set (see ‘‘Materials and Methods’’ section). This strain-

specific gene set best represents those genes that differ in basal

levels among the panel of inbred mouse strains and whose

expression is likely to be influenced by genetic polymorphisms

(Gatti et al., 2007). Similarly, those genes that were significant

for all three factors (strain, treatment, and necrosis) best

represent the genes that could yield important information on

the mechanism of acetaminophen toxicity but would make

a poor biomarker because basal levels are affected by

individual genotype.

FIG. 1. Liver necrosis measured across strains after acetaminophen

treatment shows a gradient of response across mouse strains at 24 h.

FIG. 2. Principal components analysis. PCA of the global gene expression

changes in the left liver lobe following treatment with vehicle (0.5% methyl

cellulose) or acetaminophen (300 mg/kg, ig, 24 h). Acetaminophen-treated

samples are depicted as triangles and vehicle-treated samples are depicted as

squares. The data separate along the first principal component (PC1) by

treatment. There is additional separation of gene expression along PC1 and PC2

by the amount of liver necrosis sustained (white to black scale bar ¼ 0–100%

necrosis).
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Next, functional pathway analysis was performed in order to

determine biological pathways most affected by the main ex-

perimental factors of strain, treatment, or liver injury (Table 1).

Several pathways were identified as significant within the

necrosis-specific gene set. As expected, those pathways that were

most significantly enriched are associated with cellular growth

processes, including signaling mediated by interleukin (IL)-10,

IL-6, extracellular signal-regulated kinase (ERK)/mitogen acti-

vated protein kinase (MAPK), and nuclear factor kappa (NF- jB).

Interestingly, a diversity of canonical pathways was

enriched within the gene set that was significant for a main

effect of strain alone. These pathways include genes involved

in mitochondrial dysfunction as well as metabolic pathways.

Interestingly, the pathway for lipopolysaccharide (LPS)/IL-1–

mediated inhibition of retinoid X receptor (RXR) function

was significantly enriched and included critical mediators

such as peroxisome proliferator–activated receptor alpha and

tumor necrosis factor. Taken together, the large number of

genes and canonical pathways that are affected by strain-

dependent gene expression indicate that choice of rodent

strain in toxicity risk assessment is of importance.

Population-Based Gene Expression Biomarkers of Response

There were 26 transcripts whose expression was affected

significantly by both treatment and by the toxicity outcome

(i.e., liver necrosis), but not the subject’s genotype (Table 2).

We reason that these genes could serve as population-based

biomarkers of response. To visualize gene expression changes

of the biomarker transcripts across individuals, a heat map was

generated (Fig. 3B). A clear gradient of expression changes can

be observed for each of these genes depending on the amount

of necrosis sustained by an individual mouse. Expression of 17

of these transcripts increased, while 9 genes decreased as liver

necrosis increased in acetaminophen-treated mice.

In order to determine whether molecular interactions exist

among the population-based transcript biomarkers, a pathway

map was constructed using IPA. This analysis revealed that 16

of the 26 population-based response biomarkers are closely

linked in a cell death and proliferation network centered on cell

cycle regulating genes Trp53, Myc, Jun, and Cdkn1a (p21)

(Fig. 4). Closely associated with this network were the

cytokine-responsive genes interleukin 6 signal transducer

(Il6st) and oncostatin M receptor (Osmr) (Figs. 3C and 3D),

as well as the glucose-responsive transcription factor MLX

interacting protein like (Mlxipl) and CDC14 cell division cycle

14 homolog B (Cdc14b) (Figs. 3E and 3F).FIG. 3. Detection of population-based biomarkers of response from gene

expression data. (A) The Venn diagram depicts the number of genes

significant for each factor in the ANCOVA model, namely treatment, strain

(genotype), and the individual’s liver necrosis score at 24 h. Population-based

biomarkers of response are those 26 genes that are significant for treatment

and necrosis score, but not by genotype. (B) The expression patterns of the 26

biomarkers are depicted in a heat map in which samples (rows) were ordered

first by necrosis score and then by treatment. Unsupervised hierarchical

clustering was performed on the genes (columns). Biomarker gene expression

for each sample as plotted against the liver necrosis score is shown for

transcript expression that is increased with necrosis: the oncostatin M receptor

subunits Il6st (C) and Osmr (D) and for transcript expression that is decreased

with necrosis: Mlxipl (E) and Cdc14b (F). Values for vehicle-treated mice are

shown in open squares and values for APAP-treated mice are shown in closed

circles. The linear regression trend lines for acetaminophen-treated samples

are shown.
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DISCUSSION

Identification of the Population-Based Biomarkers of Toxicity
Response

Decades of mechanistic investigations into the liver toxicity

of acetaminophen have concluded that (1) metabolic activation

to the reactive metabolite N-acetyl-p-benzoquinone imine and

its binding to cellular proteins is an essential initiating event for

the toxicity, (2) intracellular events involved in cell death such

as mitochondrial dysfunction and formation of reactive oxygen

and nitrogen species propagate the injury, and (iii) inflamma-

tory response to cell death in the liver may exacerbate the

damage (Jaeschke and Bajt, 2006; Kaplowitz, 2005). Thus, the

fact that our study not only identified 26 biomarker genes in

which expression across strains was associated with the level of

liver necrosis but also showed that 16 of the 26 response

biomarker genes are involved in cell death pathways and form

a closely linked molecular network confirms a central role for

intracellular cell signaling in acetaminophen-induced liver

toxicity.

Not only are cell death–related genes mechanistic biomarkers

of response across genetically diverse individuals as identified in

our work, they also have been shown to be consistently affected

and significantly correlated with the acetaminophen-induced

liver toxicity phenotype in a multicenter toxicogenomic study

(Beyer et al., 2007). The study, conducted at seven different

laboratories around the United States, used only one inbred

strain, C57BL/6J; however, it showed that Myc is induced by

acetaminophen and that a myelocytomatosis oncogene-centered

cell death pathway is the most significant network of proteins

associated with liver injury in the mouse at 6, 12, and 24 h after

treatment with a dose identical to that used in our work.

Furthermore, expression of cyclin-dependent kinase inhibitor

p21 (Cdkn1a), a central gene in the biomarker gene network, has

been shown previously to be required for liver necrosis in

rodents (Kwon et al., 2003). In addition, decreased levels of

Cdc14b are consistent with increased activation of Trp53 (Kwon

et al., 2003), which may be a compensatory mechanism to signal

for an increase in cellular repair following acetaminophen

overdose. Collectively, 16 of the 26 response biomarker genes

identified in our study may be mechanism-relevant biomarkers

of liver necrosis that have potential to be used to profile toxicity

across individuals and in multiple independent microarray

studies.

Importantly, the genes identified in this study are interesting

not only as potential biomarkers but also as mediators of

acetaminophen-induced cell death and regeneration in liver.

For example, the role of OSMR in acetaminophen-induced

liver injury deserves attention because genes coding for its two

subunits, Osmr and Il6st, were both identified as genotype-

independent biomarkers of the liver toxicity outcome. It is

known that Il6st expression is essential for the control of the

hepatic acute-phase response during liver regeneration (Streetz

et al., 2003; Wuestefeld et al., 2003). However, while IL-6

represents one of the best-studied cytokines, there is relatively

little known about the biological activities of oncostatin M

(OSM), a cytokine secreted by activated T lymphocytes,

macrophages, and neutrophils. OSM may have a profibrotic

role in liver injury owing to its ability to induce tissue inhibitor

of metalloproteinase (TIMP) 1 (Richards et al., 1993) and

TIMP3 (Li and Zafarullah, 1998). While OSM has been shown

to be increased following acetaminophen-induced liver injury

(Masubuchi et al., 2003), Osmr transcript levels have not been

shown previously to correlate with liver necrosis end points.

Additionally, knockout mice deficient for Osmr display defects

in liver regeneration following carbon tetrachloride exposure

(Nakamura et al., 2004); more importantly, administration of

exogenous OSM ameliorated liver injury in wild-type mice

(Nakamura et al., 2004).

In addition, expression of Mlxipl, also known as carbohydrate

response element–binding protein (Chrebp), a transcription factor

that plays a central role in the dietary regulation of hepatic gene

TABLE 1

Enriched Ingenuity Canonical Pathways Listed by Experimental

Factor

Gene list Canonical pathway

Total

input

genes

Reference

genes

Pathway

p value

Necrosis IL-10 signaling 6 71 8.42 3 10�5

IL-6 signaling 5 96 4.73 3 10�3

Glycine, serine, and threonine

metabolism

4 144 5.61 3 10�3

ERK/MAPK signaling 6 192 1.92 3 10�2

NF-jB signaling 5 147 2.35 3 10�2

Propranolate metabolism 4 126 3.29 3 10�2

Clathrin-mediated endocytosis 5 167 3.31 3 10�2

Starch and sucrose metabolism 3 191 3.31 3 10�2

Macropinocytosis 3 72 4.47 3 10�2

LXR/PXR activation 3 85 4.66 3 10�2

Strain Mitochondrial dysfunction 14 170 5.96 3 10�4

Pentose phosphate pathway 6 88 6.5 3 10�3

Purine metabolism 23 417 9.75 3 10�3

Pyrimidine metabolism 15 228 1.19 3 10�2

Death receptor signaling 7 65 1.5 3 10�2

Inositol phosphate metabolism 12 172 1.71 3 10�2

Propranolate metabolism 8 126 1.83 3 10�2

Nicotinate and nicotinamide

metabolism

10 129 2.38 3 10�2

LPS/IL-1–mediated inhibition

of RXR function

14 197 3.05 3 10�2

Interferon signaling 5 29 3.06 3 10�2

Cell cycle: G1/S checkpoint

regulation

6 58 3.58 3 10�2

Role of PXR in interferon

induction and antiviral response

5 47 4.95 3 10�2

Treatment TREM1 signaling 3 69 5.31 3 10�4

Endothelin-1 signaling 3 183 1.02 3 10�2

Glucocorticoid receptor signaling 3 278 2.57 3 10�2

Note. LXR, liver X receptor; PXR, pregnane X receptor; RXR, retinoid X

receptor; TREM1, triggering receptor expressed on myeloid cells 1.
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expression by glucose, was decreased as the degree of liver

necrosis increased in animals treated with acetaminophen. Several

recent studies demonstrated that acetaminophen can affect blood

glucose levels (Kendig et al., 2008) and improve glucose tolerance

in mice fed a high-fat diet (Shertzer et al., 2008). The former study

showed that daily administration of acetaminophen prevented

approximately 70% of weight gain compared to mice fed the high-

fat diet alone, even at a daily dose that was lower than half of the

maximum recommended weight-adjusted human dose (Kendig

et al., 2008). In addition, decreases in liver glucose and increases in

lipid content were observed in the mouse liver after acetamino-

phen overdose using nuclear magnetic resonance-based metab-

olomics (Coen et al., 2004) and may explain the dramatic decrease

in Mlxipl transcript levels observed in our work. While further

studies need to be conducted to link effects on glucose modulation

at subacute doses of acetaminophen with the acute toxic doses

used in our study, changes in Mlxipl expression may yield insight

into the mechanism of these phenomena.

An important limitation of the animal studies of toxicity

mechanisms is the ability to translate the data to clinical

TABLE 2

Population-Based Biomarker Transcripts Detected by Analysis of Covariance that Have a Main Effect of Treatment and Necrosis

Score, but Not of Strain

Gene symbol Gene name Necrosis p valuea Treatment p valuea Strain p valuea R2

Decreased

C14ORF122 Chromosome 14 open-reading frame 122 7.9 3 10�10 3.7 3 10�07 1.1 3 10�2 �0.58

Tlcd1 TLC domain containing 1 1.3 3 10�09 2.4 3 10�07 5.4 3 10�4 �0.62

KIAA1370 KIAA1370 2.9 3 10�09 8.1 3 10�08 8.6 3 10�4 �0.54

Rhbg Rhesus blood group–associated B

glycoprotein

4.3 3 10�09 5.3 3 10�07 2.2 3 10�3 �0.54

Cdc14b CDC14 cell division cycle 14 homolog B

(Saccharomyces cerevisiae)
1.9 3 10�08 1.1 3 10�07 2.5 3 10�3 �0.59

Lgr5 Leucine-rich repeat containing G protein–

coupled receptor 5

2.6 3 10�08 1.6 3 10�07 2.7 3 10�3 �0.55

L2hgdh L-2-hydroxyglutarate dehydrogenase 3.0 3 10�07 2.1 3 10�07 6.4 3 10�3 �0.55

Mcm10 Minichromosome maintenance deficient 10

(Saccharomyces cerevisiae)

3.3 3 10�07 2.5 3 10�07 8.2 3 10�5 �0.40

Mlxipl Carbohydrate response element–binding

protein, MLX interacting protein like

5.9 3 10�07 4.1 3 10�07 2.9 3 10�2 �0.53

Increased

Col4a1 Procollagen, type IV, alpha 1 1.1 3 10�13 1.1 3 10�08 9.8 3 10�7 0.68

Tmem2 Transmembrane protein 2 4.8 3 10�12 1.1 3 10�08 9.7 3 10�7 0.59

Slc39a6 Solute carrier family 39 (metal ion

transporter), member 6

4.5 3 10�11 2.4 3 10�07 1.8 3 10�5 0.58

Serpine1 Serpin peptidase inhibitor, clade E (nexin,

plasminogen activator inhibitor type 1),

member 1

1.3 3 10�09 4.3 3 10�07 1.8 3 10�5 0.63

Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21) 1.4 3 10�09 7.5 3 10�12 5.6 3 10�2 0.59

D10Ertd438e DNA segment, chromosome 10, ERATO

Doi 438, expressed

4.2 3 10�09 2.0 3 10�09 9.9 3 10�3 0.60

Psme3 Proteaseome (prosome, macropain) 28

subunit, 3

5.5 3 10�08 5.7 3 10�07 1.2 3 10�1 0.55

Ddx39 DEAD (Asp-Glu-Ala-Asp) box

polypeptide 39

6.9 3 10�08 2.8 3 10�08 3.1 3 10�4 0.51

SKIL SKI-like oncogene 6.9 3 10�08 8.2 3 10�09 2.5 3 10�1 0.56

Map3k6 Mitogen-activated protein kinase kinase

kinase 6

7.7 3 10�08 4.6 3 10�07 2.5 3 10�3 0.52

Pex1 Peroxisome biogenesis factor 1 8.4 3 10�08 1.7 3 10�09 1.1 3 10�2 0.56

Il6st Interleukin 6 signal transducer 2.0 3 10�07 4.3 3 10�08 1.6 3 10�1 0.41

Osmr Oncostatin M receptor 2.1 3 10�07 2.1 3 10�07 1.8 3 10�1 0.56

Csf2rb2 Colony-stimulating factor 2 receptor, beta 2,

low-affinity (granulocyte-macrophage)

3.3 3 10�07 1.2 3 10�10 7.9 3 10�4 0.51

Cd68 CD68 antigen 4.2 3 10�07 3.2 3 10�12 1.7 3 10�2 0.53

2010109K11Rik RIKEN cDNA 2010109K11 gene 4.5 3 10�07 4.4 3 10�07 2.1 3 10�1 0.56

Ipo4 Importin 4 6.4 3 10�07 2.9 3 10�07 5.5 3 10�3 0.52

aPvalue thresholds were calculated by determining the 1% FDR. These thresholds were necrosis, p�6.8310�7; treatment,p�6.5310�7; and strainp�8310�7.

None of these genes has a significant strain 3 treatment interaction effect.
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findings. A recent study that compared acetaminophen toxicity

in the rat and humans showed that, in the rat, gene expression

data from peripheral blood cells can provide valuable in-

formation about overtly toxic exposure levels (Bushel et al.,

2007). Furthermore, based on the subset of 66 genes that were

retrieved from a rat blood training set, it was possible to

distinguish humans who overdosed on acetaminophen (five

cases) from normal individuals (three controls). None of the

FIG. 4. Biomarker gene network. Network analysis of the 26 biomarkers of response using IPA revealed that 16 of the biomarkers are closely associated with

molecular pathways involved in cell death and proliferation. The network is shown here with protein products localized to their endogenous subcellular

compartments (nucleus, cytoplasm, cell membrane, and extracellular space). Transcripts that are increased or decreased as necrosis increased are colored blue and

yellow, respectively.
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26 genes identified in our multistrain study could be matched

to human blood transcriptome and serum alanine aminotrans-

ferase data from subjects overdosing on acetaminophen

reported by Bushel et al. (2007). However, it should be

noted that the small sample size of the human data set, as well

as the unavoidable variability in the timing of the collection of

human blood samples (2 or 5 days after ingestion of

acetaminophen), could have been the major factors for lack

of mouse-to-human overlap.

The use of toxicogenomics as a tool in toxicology calls for

the careful evaluation of study designs. Because one of the

major applications of toxicogenomics is to discover biomarkers

of toxicity that are relevant to humans, great care must be taken

in choosing the appropriate model systems. Traditional risk

assessment practices using animal models allow for the control

of many experimental factors except for genetics. Although

rodent models have been widely used for toxicity testing, their

utility is often limited by (1) inaccurate generalizations from

a single genome, (2) inability to distinguish small and

biologically important changes from background variation,

(3) ineffective exploitation of reproducible genetic variation to

dissect differential response to chemical exposure, and (4)

inefficient use of defined genetic backgrounds to model

particular phenotypic profiles observed in human populations.

To address these important limitations, panels of genetically

defined organisms, such as inbred mouse lines, that provide

a fixed genotype within a particular strain but encompass great

genetic diversity across strains are being used more frequently

in biomedical research (Festing, 2001). Genetic variation

among individuals is reflected in variations in gene expression

levels (Schadt et al., 2003), which introduces additional

challenges into toxicology research. Inbred mouse strains are

reasonably well suited for identifying whole-genome response

signatures indicative of chemical exposure because much is

known regarding genetic lineage and derivation for hundreds of

strains, and the number and distribution of genetic poly-

morphisms among mouse strains is equal to or exceeds that in

the human population (Roberts et al., 2007). This approach has

the added advantage of ‘‘repeat testing’’ in genetically identical

individuals within a given strain, yielding important informa-

tion regarding reproducibility of the response.

The largest group of genes identified in this study as

significantly different between individuals comprised tran-

scripts that differ in basal levels between inbred mouse strains,

despite the fact that over two thirds of all strains exhibited

variable degrees of liver damage. We also observed a high

degree of intrastrain variability in toxicity that has been

reported by other investigators, particularly for the C57BL/6J

mouse (Beyer et al., 2007) and the Sprague-Dawley rat

(Clayton et al., 2006). This variability can be due to a variety of

factors that often cannot be controlled by the experimenter in

standard toxicity studies, including epigenetic effects and

differential contributions of intestinal microflora. In summary,

our data underscore the value of multistrain experiments that

can avert the risk of large genotype effects in a particular strain

of animals used for toxicity risk assessment to determine

biomarkers of response.
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